Editorial: Frontiers in Synaptic Plasticity: Dendritic Spines, Circuitries and Behavior
نویسندگان
چکیده
More than a century ago, in 1906, the Nobel Prize in Physiology or Medicine was awarded to Camillo Golgi and Santiago Ramón y Cajal " in recognition of their work on the structure of the nervous system. " Using the Golgi technique, Cajal discovered and described dendritic spines, which, since then, have received considerable attention. Dendritic spines are the major targets of excitatory syn-apses within the brain. Their disparate morphologies appear to reflect cellular processes involved in neuronal and synaptic plasticity. Dendritic spines reach high levels of complexity in humans (1). Neuronal and synaptic plasticity are manifested by changes in structure (e.g., dendritic spine shape, size, density, and connectivity) and activity (e.g., long-term potentiation) leading to dynamic changes in circuitries for neuronal processing. Furthermore, some of these changes in the brain can translate into altered behavior and even can contribute to psychiatric disorders. Animal models have been key to the study of affective and social behaviors, as well as neurological and psychiatric disorders. They provide insight into mechanisms underlying basic to complex neural functions and disturbances in behavior. However, there is a paucity of compilations correlating alterations in synaptic structure with various physiological and behavioral paradigms. This Research Topic is a forum for the exchange of data and novel hypotheses about synaptic and brain plasticity. It comprises 10 articles with 3 original research articles, 3 reviews, 2 hypothesis and theory papers, 1 opinion, and 1 general commentary elaborated by 39 authors from various countries. These contributions present state-of-the art approaches to the study of dendritic spines, circuitries, and behavior from animal models, including rodents and primates, to humans. The research strategies used range from classic techniques to cutting-edge technologies, including imaging techniques, electrophysiology, and experimental-based hypothetical approaches. Tønnesen and Nägerl provide up-to-date STED microscopy data on structure and function relationships of dendritic spines. These data include the spine head volume and local postsynaptic density associated with the neck diameter and its variable resistance. In conjunction, they modulate the spine electrical compartmentalization or the influence on dendritic voltage and synaptic plasticity. These data are crucial in evaluating the impact of spine geometry on neuronal function and dynamic synaptic processing and enduring changes in neural circuits. Hansberg-Pastor et al. describe the broad and complex actions of estradiol and progesterone on the regulation of protein components of the cytoskeleton of neurons and astrocytes that ultimately affect cellular morphology, function, and connections, including dendritic …
منابع مشابه
Editorial: Exciting Dendritic Spines
The ability of a synapse to alter its strength based on use (synaptic plasticity) reigns as the basis of most cellular models of learning and memory [1]. However, if synaptic plasticity is king, then the dendritic spine is its kingdom. The dendritic spine, which houses the majority of excitatory synapses in the mammalian central nervous system, also undergoes dynamic changes to its shape (struc...
متن کاملEffects of N-Cadherin Disruption on Spine Morphological Dynamics
Structural changes at synapses are thought to be a key mechanism for the encoding of memories in the brain. Recent studies have shown that changes in the dynamic behavior of dendritic spines accompany bidirectional changes in synaptic plasticity, and that the disruption of structural constraints at synapses may play a mechanistic role in spine plasticity. While the prolonged disruption of N-cad...
متن کاملDifferential modulation of drug-induced structural and functional plasticity of dendritic spines.
Drug-induced plasticity of excitatory synapses has been proposed to be the cellular mechanism underlying the aberrant learning associated with addiction. Exposure to various drugs of abuse causes both morphological plasticity of dendritic spines and functional plasticity of excitatory synaptic transmission. Chronic activation of μ-opioid receptors (MOR) in cultured hippocampal neurons causes tw...
متن کاملStudying signal transduction in single dendritic spines.
Many forms of synaptic plasticity are triggered by biochemical signaling that occurs in small postsynaptic compartments called dendritic spines, each of which typically houses the postsynaptic terminal associated with a single glutamatergic synapse. Recent advances in optical techniques allow investigators to monitor biochemical signaling in single dendritic spines and thus reveal the signaling...
متن کاملThe “addicted” spine
Units of dendritic branches called dendritic spines represent more than simply decorative appendages of the neuron and actively participate in integrative functions of "spinous" nerve cells thereby contributing to the general phenomenon of synaptic plasticity. In animal models of drug addiction, spines are profoundly affected by treatments with drugs of abuse and represent important sub cellula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016